Search
Code Directory
 ASP
 ASP.NET
 C/C++
 CFML
 CGI/PERL
 Delphi
 Development
 Flash
 HTML
 Java
 JavaScript
 Pascal
 PHP
 Python
 SQL
 Tools
 Visual Basic & VB.NET
 XML
New Code
.Net Runtime Library for Delphi 6.0.4.0
Scimbo 1.64
AnyMap JS Maps 8.4.2
GetOrgChart 2.5.3
AnyChart JS Charts and Dashboards 8.4.2
OrgChart JS 3.8.0
dbForge Compare Bundle for MySQL 8.1
dbForge Search for SQL Server 2.3
Database Workbench Pro 5.5.0
Luxand FaceSDK 7.0
SSIS Data Flow Components 1.10
Entity Developer Professional 6.3
dbForge Index Manager for SQL Server 1.9
dbForge Data Generator For MySQL 2.2
Magento Australia Post eParcel Extension 1.0
Top Code
Deals and Discounts Website Script 1.0.2
ADO.NET Provider for ExactTarget 1.0
Solid File System OS edition 5.1
Classified Ad Lister 1.0
Aglowsoft SQL Query Tools 8.2
ICPennyBid Penny Auction Script 4.0
PHP Review Script 1.0
ATN Resume Finder 2.0
ATN Site Builder 3.0
Availability Booking Calendar PHP 1.0
PHP GZ Blog Script 1.1
ATN Jobs Software 4.0
ATN Mall 2.0
WeBuilder 2015 13.3
PHP Digital Download Script 1.0.4
Report About Berkeley Wavelet Transform 1.0
- required fields

Please enter text on the image
  



The Berkeley Wavelet Transform (BWT) comprises four pairs of mother wavelets at four orientations. Within each pair, one wavelet has odd symmetry, and the other has even symmetry. By translation and scaling of the whole set (plus a single constant term), the wavelets form a complete, orthonormal basis in two dimensions.

The BWT shares many characteristics with the receptive fields of neurons in mammalian primary visual cortex (V1). Like these receptive fields, BWT wavelets are localized in space, tuned in spatial frequency and orientation, and form a set that is approximately scale invariant. The wavelets also have spatial frequency and orientation bandwidths that are comparable with biological values.

Although the classical Gabor wavelet model is a more accurate description of the receptive fields of individual V1 neurons, the BWT has some interesting advantages. It is a complete, orthonormal basis and is therefore inexpensive to compute, manipulate, and invert. These properties make the BWT useful in situations where computational power or experimental data are limited, such as estimation of the spatiotemporal receptive fields of neurons.

See http://dx.doi.org/10.1162/neco.2007.05-07-513 for more details, or:
Willmore B, Prenger RJ, Wu MC and Gallant JL (2008a). The Berkeley Wavelet Transform: A biologically-inspired orthogonal wavelet transform. Neural Computation 20:6, 1537d-deOCt1564

Back