Search
Code Directory
ASP
ASP.NET
C/C++
CFML
CGI/PERL
Delphi
Development
Flash
HTML
Java
JavaScript
Pascal
PHP
Python
SQL
Tools
Visual Basic & VB.NET
XML
New Code
 Spire.PDF for Java 2.7.8 Database Workbench Pro 5.6.10.0 The C# PDF Library 2020.1.5 CAD-Viewer 3DVBVIEW V4 dotConnect for SQLite 5.15 LuaStudio 9.92 EntityDAC 2.3 Devart ODBC Driver for QuickBooks 2.0 phpEnter 5.1. Udemy Clone script 2.01 VisualNEO Web 19.11.7 VisualNEO for Windows 19.4.29.0 SentiVeillance SDK Trial 7.3 Devart ODBC Driver for PostgreSQL 3.2 SecureBridge 9.2
Top Code
 phpEnter 5.1. Single Leg MLM 1.2.1 Azizi search engine script PHP 4.1.10 Paste phpSoftPro 1.4.1 Extreme Injector 3.7 Deals and Discounts Website Script 1.0.2 ADO.NET Provider for ExactTarget 1.0 Solid File System OS edition 5.1 Classified Ad Lister 1.0 Aglowsoft SQL Query Tools 8.2 Invoice Manager by PHPJabbers 3.0 ICPennyBid Penny Auction Script 4.0 PHP Review Script 1.0 ATN Resume Finder 2.0 ATN Site Builder 3.0
Report About Error propagation function 1.0

First define a symbolic function f(u1,u2,...,ui) using the syms command.

Next, define a vector u=[u1,u2,...,ui] containing all variables of f.

Define an 1 x i row vector q=[q1,q2,...,qi], containing the values that the function will be evaluated in. Define also an sq=[sq1,sq2,...,sqi] vector, containing the uncertainty on every value in q.

q and sq can also be
m x i matrices (for varying values of qi and sqi). You can also have varying qi and a fixed sqi (the function will recognize if sqi is fixed (a row vector) or changing (a matrix).

The function will output an m x 2 matrix with the first column containing f(q) and the second column the error propagation of f(q) using this formula:

http://quicklatex.com/cache3/ql_57dd8db09f...67dc4699_l3.png

Back