Code Directory
 Visual Basic & VB.NET
New Code
Paste phpSoftPro 1.4.1
Bytescout PDF SDK
Odoo Crafito Theme 1.0
Uber Clone- Taxi Booking App 4.1
Excel Add-in for BigCommerce 1.7
Online Food Delivery Script php 1.0.3
Break Script | Youtube Clone Script 1.0.3
Advanced Content Manager Magento 2 extension 2.2.x
dbForge Studio for PostgreSQL 1.0
ODBC Driver for Salesforce MC 1.3
Social Media Script 1.0
ByteScout PDF Renderer SDK
Magento Mobile App Builder 2.0.0
Binary MLM Plan 1.0.2
Review Assistant 4.0
Top Code
Online Food Delivery Script php 1.0.3
Online Food Ordeing System 1.0
Simplified Gradient Descent Optimization 1.0
Java-2-Pseudo 1.0
Issue Manager App 1.0
Ping Pong Game Code Script 1.1
Uber Clone- Taxi Booking App 4.1
Memory (a.k.a. Concentration) 1.0
Gradient Descent Visualization 1.0
Planyo online reservation system module 6.x-1.8
Phase Locked Loop Synthesis and Simulation 1.0
Binary MLM Plan 1.0.2
Code Box Editor 1.1
UHEvents - Event management 1.0
Chess Master 1.0
Top Rated
Output Messenger 1.8.0
Aliexpress Clone- Ec21 Script 1
Indiegogo Clone 3.0
Online Food Ordeing System 1.0
PHP Image Resize Script 1.0
Best Spotify Clone 1.0
Get Random Record Based on Weight 1.0.0
PHP Point of sale 10.0
Travel Portal Script 9.29
Magento Product Designer 1.0
OFOS - Just Eat Clone Script 1.0
PrestaShop Upload Images Module 1.2.1
Trading Software 1.2.4
Deals and Discounts Website Script 1.0.2
ADO.NET Provider for ExactTarget 1.0
First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07) 1.0
File ID: 79205

First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07) 1.0
Download First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07) 1.0http://www.mathworks.comReport Error Link
License: Shareware
File Size: 10.0 KB
Downloads: 5
Submit Rating:
First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07) 1.0 Description
Description: First-order-degree linear differential and non-homogeneous equation's solution possible the unknown integration multipler technique. Also, this simple technique's depend both sides of original homogeneous differential equation. The solution is slightly and more complicated if this integration into special form to be very complex. In this application's selected Ig=x^a.y^b integration multiplier technique for non-homogeneous form.


DIfactor( [ f1(x,y) , f2(x,y)] , flag )

f1(x,y) : Non-homogeneous differential equation's M(x,y) function
f2(x,y) : Non-homogeneous differential equation's N(x,y) function
flag : If flag=1 than solution be perceive application else small solution

General differential equation's
[M(x,y)]dx + [N(x,y)]dy = 0


[2*x^3*y^4 - 5*y]dx + [x^4*y^3 - 7*x]dy = 0

M(x,y)= f1(x,y) = [2*x^3*y^4 - 5*y]
N(x,y)= f2(x,y) = [x^4*y^3 - 7*x]

Matlab sub function application

DIfactor( [2*x^3*y^4 - 5*y , x^4*y^3 - 7*x] , 1) ;

Example1.pdf (Analytical solution)
DIfactor.m (sub function Matlab)
example.m (run sub function)


[1] Differential equations,PhD.Frank Ayres, Schaum's outline series and McGraw-Hill Company ,1998

[2] Mathematical handbook of formulas and tables,PhD. Murray R. Spiegel, PhD. John Liu, Second edition,McGraw-Hill book company,2001,ISBN:0-07-038203-4

[3] Differansiyel denklemler, Yrd.Do?.Dr. A.Ne?e Dernek, Do?.Dr.Ahmet,Dernek, Marmara university,Deniz book publisher,Istanbul,1995

License: Shareware

Related: equationsphdfrank, differential, references, ayres, schaum, mcgrawhill, series, Outline, examplehtml, examplem

O/S:BSD, Linux, Solaris, Mac OS X

File Size: 10.0 KB

Downloads: 5

More Similar Code

This projects aims at giving to the scientific community good reasons for programming in Ruby, with a library providing, among others, fits, ordinary differential equations integration, backends for handling data, and more !

In this Matlab application was perused Jean Le Rand D'Alambert's** Reduction Method for two degree of linear differential equations and several analytical examples are compared with matlab solution applications.

**Jean d'Alembert was a...

POLYFIT3(X,Y,N,NUL,W) finds the coefficients of a polynomial P(X) of degree N that fits the data, P(X(I))~=Y(I), in a least-squares sense. Any of the coefficients can be forced to be zero, and data can be weighted.

NUL is a vector with...

Graphical user interface (GUI) is used to solve up to two ordinary differential equations (ODEs). Results can be plotted easily. Choose between MATLAB's ode45 (non-stiff solver) or ode15s (stiffer solver).

This is primarily a teaching...

In this application is descriptioned homogen-differential equations generally solutions with matlab symbolic tool's.

Generally homogen-differential equation's form is (where R=[d/dx] ) sum {i=1:n} [C_(i)*R^{i}].y=0

rkn86 Integrates a special system of second order ordinary differential equations of the form
d^2 y/dx^2 = f(x,y), y(x0)=y0, y'(x0)=y'0
using an effectivelly 8-stages Runge-Kutta-Nystrom pair of orders 8 and 6.
The method advances...

This script generates artificial spatial data using a first order spatial autoregressive process (AR1)

The process is
X(i,j) = PHI*(X(i,j-1)+X(i,j+1)+X(i-1,j)+X(i+1,j) + error

To generate a 10x10, periodic spatial...

This function solves the linear fractional-order differential equations (FODE) with constant coefficients. The short memory principle has not neen used here, so the length of input signal is limited to few hundred samples. The parameters of the...

FDE12 solves an initial value problem for a non-linear differential equation of fractional order (FDE).

This is an implementation of the predictor-corrector method of Adams-Bashforth-Moulton described in [1]. Convergence and accuracy of...

It Solves linear homogeneous and non homogeneous differential equations with constant coefficients. The inputs and outputs are in symbolic format. You enter the symbolic differential equation and you get the answer in symbolic format.

User Review for First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07)
- required fields

Please enter text on the image