Search
Code Directory
 ASP
 ASP.NET
 C/C++
 CFML
 CGI/PERL
 Delphi
 Development
 Flash
 HTML
 Java
 JavaScript
 Pascal
 PHP
 Python
 SQL
 Tools
 Visual Basic & VB.NET
 XML
New Code
Rapid PHP 2018 15.5
IBDAC 6.4
Online Course Booking Script 1.3.3
Database Workbench Pro 5.6.4
Job Portal Script 1.3.2
The C# PDF Library 5.2
PostgreSQL Data Access Components 6.0
Virtual Data Access Components 11.0
HTMLPad 2018 15.5
WeBuilder 2018 15.5
SentiMask SDK Trial 2.0.0
Track Order For Magento 2 1.0.0
Calendar 365 For Dynamics CRM 4.0
Scimbo 1.2
Odoo Furnito Theme 1.0
Top Code
PostgreSQL Data Access Components 4.4
Database Workbench Pro 5.6.4
Availability Booking Calendar PHP 1.0
Online Course Booking Script 3.04
ATN Site Builder 3.0
ATN Resume Finder 2.0
PHP Review Script 1.0
IBDAC 6.4
ICPennyBid Penny Auction Script 4.0
Invoice Manager by PHPJabbers 3.0
The C# PDF Library 1.0
HTMLPad 2018 15.5
Aglowsoft SQL Query Tools 8.2
Classified Ad Lister 1.0
Solid File System OS edition 5.1
Top Rated
VisualNEO Web 2018.12.15
Azizi search engine script PHP 4.1.10
Paste phpSoftPro 1.4.1
Extreme Injector 3.7
Deals and Discounts Website Script 1.0.2
ADO.NET Provider for ExactTarget 1.0
Solid File System OS edition 5.1
Classified Ad Lister 1.0
Aglowsoft SQL Query Tools 8.2
Invoice Manager by PHPJabbers 3.0
ICPennyBid Penny Auction Script 4.0
PHP Review Script 1.0
ATN Resume Finder 2.0
ATN Site Builder 3.0
Availability Booking Calendar PHP 1.0
K-means 
File ID: 64379






K-means 
Download K-means http://code.activestate.com/recipes/577735-expectation-maximization/?in=lang-pythonReport Error Link
License: Freeware
Downloads: 506
Submit Rating:
K-means  Description
Description: Hard and soft k-means implemented simply in python (with numpy). Quick and dirty, tested and works on large (10k+ observations, 2-10 features) real-world data.

License: Freeware

Related: data mining, machine learning

O/S:Windows

Downloads: 506



More Similar Code

The k-means algorithm is widely used in a number applications like speech processing and image compression.

This script implements the algorithm in a simple but general way. It performs four basic steps.

1. Define k arbitrary prototypes from the data samples.
2. Assign each sample to the nearest prototype.
3. Recalculate prototypes as arithmetic means.
4. If a prototype changes, repeat step (2).



Codes for fuzzy k means clustering, including k means with extragrades, Gustafson Kessel algorithm, fuzzy linear discriminant analysis. Performance measure is also calculated.



An implementation of "k-Means Projective Clustering" by P. K. Agarwal and N. H. Mustafa.

This method of clustering is based on finding few subspaces such that each point is close to a subspace.



K-means image segmentation based on histogram to reduce memory usage which is constant for any image size.



This is a tool for K-means clustering. After trying several different ways to program, I got the conclusion that using simple loops to perform distance calculation and comparison is most efficient and accurate because of the JIT acceleration in...



[L, C, D] = FKMEANS(X, k) partitions the vectors in the n-by-p matrix X
into k (or, rarely, fewer) clusters by applying the well known batch
K-means algorithm. Rows of X correspond to points, columns correspond to
variables. The...



Usage: [means,c]=KNMCluster(k,indata)

KNMCluster is an implementation of the K-means clustering algorithm. It takes inputs k and indata. k is the initial guess of the number of clusters.

indata is the aggregate data that you...



Description DC is simple and effective which can outperform the K-means and AP algorithm.



PBKM is simple and effective which can outperform the K-means algorithm.



This is an implementation of the paper
k-means++: the advantages of careful seeding.

It converges very quickly.

User Review for K-means
- required fields
     

Please enter text on the image