Code Directory
 Visual Basic & VB.NET
New Code
C# QR Code Generator
Salesforce WordPress Customer Portal 3.2.0
Single Leg MLM 1.2.1
OzGIS 14.6
Quick Maps For Dynamics CRM 3.1
Job Board Software 4.2
PHP Real Estate Script 1.3.2
IP2Location Geolocation Database April.2019
dbForge Data Generator for Oracle 2.1
VisualNEO Web 2018.12.15
SentiMask SDK Trial 1.0.0
OrgChart JS 4.6.4
dotConnect for BigCommerce 1.8
FedEx Smart Shipping For Magento 1.0.0
Database Workbench Pro
Top Code
Cuckoo Search (CS) Algorithm 1.0
MATLAB Support Package for Arduino (aka ArduinoIO Package) 1.0
Modbus RS232 ASCII Communication Functions 1.0
Job Board Software 4.2
Hyperion Tools 1.0
Emulator_8051 _8051
bit plane slicing 1.0
CardCheck COM DLL for Credit Card Processing 1.1
Efficient K-Means Clustering using JIT 1.0
webmoney - Webmoney payment gateway 5.x-1.2
Azizi search engine script PHP 4.1.10
Power System Stability and Control 1.0
NDRZilla NDR viewer
Image Cut (Image Splitter) 1.504
Comag Channel List Editor 1.0
Top Rated
VisualNEO Web 2018.12.15
Paste phpSoftPro 1.4.1
Deals and Discounts Website Script 1.0.2
ADO.NET Provider for ExactTarget 1.0
Solid File System OS edition 5.1
Classified Ad Lister 1.0
Aglowsoft SQL Query Tools 8.2
Invoice Manager by PHPJabbers 3.0
ICPennyBid Penny Auction Script 4.0
PHP Review Script 1.0
ATN Resume Finder 2.0
ATN Site Builder 3.0
Availability Booking Calendar PHP 1.0
PHP GZ Blog Script 1.1
ATN Jobs Software 4.0
Multiclass GentleAdaboosting 1.0
File ID: 78974

Multiclass GentleAdaboosting 1.0
Download Multiclass GentleAdaboosting 1.0http://www.mathworks.comReport Error Link
License: Freeware
File Size: 102.4 KB
Downloads: 61
Submit Rating:
Multiclass GentleAdaboosting 1.0 Description
Description: A fast Gentle Adaboost classifier with two different weak-learners: i) decision stump and ii) perceptron. Multiclass is performed with the one-against-all strategy.


model = gentleboost_model(X , y , [T] , [options]);


X Features matrix (d x N)
y Labels (1 x N). If y represent binary labels vector then y_i={-1,1}, i=1,...,N
T Number of weak learners (default T = 100)
weaklearner Choice of weaklearner 0 : Decision Stump, 1 : Perceptron (default weaklearner = 0)

epsi Epsilon constant in the sigmoid function used in the perceptron (default epsi = 1)
lambda Regularization parameter for the perceptron's weights update (default lambda = 1e-3)
max_ite Maximum number of iterations of the perceptron algorithm (default max_ite = 100)


model Structure of model output

featureIdx Features index of the T best weaklearners (T x m) where m is the number of class.
For binary classification m is force to 1.
th Theta (T x m)
b Bias parameter (T x m)
a Decision Stump extra parameter (T x m)

Please run mexme_gentleboost to compile mex-files on your platform.

Please run test_gentleboost_model to run the demo.

N.B. Last build of libsvm is also included and slightly modified to suppress verbose.

License: Freeware

Related: weaklearners, bias parameter, binary classification, slightly, and ii, algorithm default, included, binary labels, Build, constant, decision stump, default epsi, compile mexfiles, classifier, choice, classfor binary, adaboost classifier, gentleboost, weig

O/S:BSD, Linux, Solaris, Mac OS X

File Size: 102.4 KB

Downloads: 61

More Similar Code

Multiclass machine learning

- Allows for >=2 classes
- Requires only base MATLAB (no toolboxes needed)
- Assumes that the data is complete (no missing values)
- Has been verified against statistical software

- if pooled covariance...

Theodoros Giannakopoulos

Feature extraction (as in most pattern recognition problems) is maybe the most important step in audio classification tasks. The...

User Review for Multiclass GentleAdaboosting
- required fields

Please enter text on the image