Search
Code Directory
 ASP
 ASP.NET
 C/C++
 CFML
 CGI/PERL
 Delphi
 Development
 Flash
 HTML
 Java
 JavaScript
 Pascal
 PHP
 Python
 SQL
 Tools
 Visual Basic & VB.NET
 XML
New Code
Excel Add-in for DB2 1.7
wolfSSL 4.0.0
EntityDAC Express 2.2
SecureBridge 9.1
C# HTML to PDF 2019.6.5
PHP Ecommerce Script 3.6
Devart SSIS Data Flow Components 1.11
dbForge Data Compare for PostgreSQL 3.2.15
OrgChart JS 4.9.7
iScripts CyberMatch 1.3.3
AnyGantt JS Gantt Charts 8.7.0
Database Workbench Pro 5.6.8
SentiMask SDK Trial 2.0.193121
dbForge Studio for SQL Server 5.8
ODBC Driver for ASE 2.1.2
Top Code
iScripts CyberMatch 1.3
ATN Site Builder 3.0
Browse for folder with a Quick Pick 1.1
xPC Target Function Library Quick Reference Sheet 1.0
Quick routine to plot RGB overlay of three images 1.0
dbForge Data Compare for PostgreSQL 2.0
SecureBridge 8.0
dbForge Studio for SQL Server 5.5
Database Workbench Pro 5.6.8
PHP Ecommerce Script 1.0.4
Availability Booking Calendar PHP 1.0
Image Seqmentation 1.0
Ace Email Syntax Checker
TD Keno 1.11
Virtual Data Access Components 11.0
Top Rated
VisualNEO Web 2018.12.15
Azizi search engine script PHP 4.1.10
Paste phpSoftPro 1.4.1
Extreme Injector 3.7
Deals and Discounts Website Script 1.0.2
ADO.NET Provider for ExactTarget 1.0
Solid File System OS edition 5.1
Classified Ad Lister 1.0
Aglowsoft SQL Query Tools 8.2
Invoice Manager by PHPJabbers 3.0
ICPennyBid Penny Auction Script 4.0
PHP Review Script 1.0
ATN Resume Finder 2.0
ATN Site Builder 3.0
Availability Booking Calendar PHP 1.0
Multiclass GentleAdaboosting 1.0
File ID: 78974






Multiclass GentleAdaboosting 1.0
Download Multiclass GentleAdaboosting 1.0http://www.mathworks.comReport Error Link
License: Freeware
File Size: 102.4 KB
Downloads: 62
Submit Rating:
Multiclass GentleAdaboosting 1.0 Description
Description: A fast Gentle Adaboost classifier with two different weak-learners: i) decision stump and ii) perceptron. Multiclass is performed with the one-against-all strategy.

Usage
------

model = gentleboost_model(X , y , [T] , [options]);


Inputs
-------

X Features matrix (d x N)
y Labels (1 x N). If y represent binary labels vector then y_i={-1,1}, i=1,...,N
T Number of weak learners (default T = 100)
options
weaklearner Choice of weaklearner 0 : Decision Stump, 1 : Perceptron (default weaklearner = 0)

epsi Epsilon constant in the sigmoid function used in the perceptron (default epsi = 1)
lambda Regularization parameter for the perceptron's weights update (default lambda = 1e-3)
max_ite Maximum number of iterations of the perceptron algorithm (default max_ite = 100)

Outputs
-------

model Structure of model output

featureIdx Features index of the T best weaklearners (T x m) where m is the number of class.
For binary classification m is force to 1.
th Theta (T x m)
b Bias parameter (T x m)
a Decision Stump extra parameter (T x m)

Please run mexme_gentleboost to compile mex-files on your platform.

Please run test_gentleboost_model to run the demo.

N.B. Last build of libsvm is also included and slightly modified to suppress verbose.

License: Freeware

Related: weaklearners, bias parameter, binary classification, slightly, and ii, algorithm default, included, binary labels, Build, constant, decision stump, default epsi, compile mexfiles, classifier, choice, classfor binary, adaboost classifier, gentleboost, weig

O/S:BSD, Linux, Solaris, Mac OS X

File Size: 102.4 KB

Downloads: 62



More Similar Code

Multiclass machine learning



- Allows for >=2 classes
- Requires only base MATLAB (no toolboxes needed)
- Assumes that the data is complete (no missing values)
- Has been verified against statistical software

Warning:
- if pooled covariance...



Theodoros Giannakopoulos
http:/www.di.uoa.gr/~tyiannak
---------------------------------------

Feature extraction (as in most pattern recognition problems) is maybe the most important step in audio classification tasks. The...

User Review for Multiclass GentleAdaboosting
- required fields
     

Please enter text on the image