
Resampling volume or image with affine matrix 1.0 File ID: 86646 


 Resampling volume or image with affine matrix 1.0 License: Shareware File Size: 10.0 KB Downloads: 7
Submit Rating: 



Resampling volume or image with affine matrix 1.0 Description 

Description: 3D Affine matrix is such a 4x4 matrix:
M = [ [R T]; [0 0 0 1] ]; [x2 y2 z2 1]ddeOao = M * [x1 y1 z1 1]ddeOao ;
where, R is a 3x3 rotation matrix, and T is a 3x1 translation matrix. [x1 y1 z1] is a location in original 3D image volume, and [x2 y2 z2] is a location in transformed 3D image volume.
Although affine geometric transformation is only limited to parallel projection, it applies to most of the common geometric transformations, including rotation, translation, scaling, reflection, shearing, etc. Some of the common 3D Affine matrices are listed at the bottom of this description.
It may seem easy if you just want to apply the 3D affine matrix to each [x y z] coordinates in the 3D image volume. However, it turns out to be more complicated when you realize that the voxel (smallest element of 3D image volume) in the transformed image may no longer be an orthogonal cube. Therefore, a 3D interpolation algorithms must also be included to transform 3D image volume. I have implemented three interpolation methods in this program.
Usage: [new_img new_M] = affine(old_img, old_M, [new_elem_size], [verbose], [bg], [method]);
old_img  original 2D image or 3D volume. We assume x for the 1st dimension, y for the 2nd dimension, and z for the 3rd dimension.
old_M  a 3x3 2D affine matrix for 2D image, or a 4x4 3D affine matrix for 3D volume. We assume x for the 1st dimension, y for the 2nd dimension, and z for the 3rd dimension.
new_elem_size (optional)  size of voxel along x y z direction for a transformed 3D volume, or size of pixel along x y for a transformed 2D image. We assume x for the 1st dimension y for the 2nd dimension, and z for the 3rd dimension. 'new_elem_size' is 1 if it is default or empty.
verbose (optional)  1, 0 1: show transforming progress in percentage 2: progress will not be displayed 'verbose' is 1 if it is default or empty.
bg (optional)  background voxel intensity in any extra corner that is caused by 3D interpolation. 0 in most cases. 'bg' will be the average of two corner voxel intensities in original image volume, if it is default or empty.
method (optional)  1, 2, or 3 1: for Trilinear interpolation 2: for Nearest Neighbor interpolation 3: for Fischer's Bresenham interpolation 'method' is 1 if it is default or empty.
I suggest that you should use Method 1 (Trilinear) unless you have good reasons to choose other methods. Method 2 (Nearest Neighbor) is slightly faster, but will bring larger interpolation error. The Method 3 (Fischer's Bresenham) is only an implementation to test the special algorithm, and you also need to download my 3D Bresenham's line generation program from: http://www.mathworks.com/matlabcentral/fil...?objectId=21057
new_img  transformed 3D image volume
new_M  transformed affine matrix
This program is inspired by: SPM5 Software from Wellcome Trust Centre for Neuroimaging http://www.fil.ion.ucl.ac.uk/spm/software Fischer, J., A. del Rio (2004). A Fast Method for Applying Rigid Transformations to Volume Data, WSCG2004 Conference. http://wscg.zcu.cz/wscg2004/Papers_2004_Short/M19.pdf
Although this program (affine3d.m) can also run on MATLAB earlier than version 6.5 (R13), the speed will be hundred times slower. So I suggest that you run this program on MATLAB version 6.5 (R13) and above.
The following script is a demo to show you how to use this program. The result is displayed in the above image.
Example 1 (3D rotation): load mri.mat; old_img = double(squeeze(D)); old_M = [0.88 0.5 3 90; 0.5 0.88 3 126; 0 0 2 72; 0 0 0 1]; new_img = affine(old_img, old_M, 2); [x y z] = meshgrid(1:128,1:128,1:27); sz = size(new_img); [x1 y1 z1] = meshgrid(1:sz(2),1:sz(1),1:sz(3)); figure; slice(x, y, z, old_img, 64, 64, 13.5); shading flat; colormap(map); view(66, 66); figure; slice(x1, y1, z1, new_img, sz(1)/2, sz(2)/2, sz(3)/2); shading flat; colormap(map); view(66, 66);
Example 2 (2D interpolation): load mri.mat; old_img=D(:,:,1,13)'; old_M = [1 0 0; 0 1 0; 0 0 1]; new_img = affine(old_img, old_M, [.2 .4]); figure; image(old_img); colormap(map); figure; image(new_img); colormap(map);
Appendix: Common 3D Affine matrices:
Translation (displacement of [dX dY dZ] for all voxels): old_M = [ 1 0 0 dX 0 1 0 dY 0 0 1 dZ 0 0 0 1 ];
Rotation (about X axis): old_M = [ 1 0 0 0 0 cosX sinX 0 0 sinX cosX 0 0 0 0 1 ];
Scaling: old_M = [ sX 0 0 0 0 sY 0 0 0 0 sZ 0 0 0 0 1 ];
License: Shareware Related: Download, bresenham, Generation, Algorithm, Special, larger, Error, Implementation, inspired, Software O/S:BSD, Linux, Solaris, Mac OS X File Size: 10.0 KB Downloads: 7


More Similar Code 

slicing image with background using 2 threshold values
Random Image with Link is multiplatform compatible. This JavaScript allows you to generate a random image with link. It does require some customization so only experienced developers should use it. You will need to change link information, image...
Sometimes, rows or columns (or both) of a displayed matrix or vector have different meanings, and it would be nice to display them along with the matrix (instead of, say, remembering that the third row holds a given property of a set of data...
addnoise(A,sz) A: image matrix sz: noise ratio (0 to 100) of the image
This function take an image and noise ratio then output a grayscaled image with uniform noise.
The uniform noise ranged from 0 to 255.
IMGAUSSIAN filters an 1D, 2D color/greyscale or 3D image with a Gaussian filter.
Instead of using a multidimensional Gaussian kernel, it uses the fact that a Gaussian kernel can be separated in 1D kernels.
By the default the...
Allows you to browse all images on your blog by date and/or category, with the ability to also search image captions for keywords.
Installation :
Activate the plugin. Add [imagebrowser] shortcode to a new or existing page.
This Function HistConnect will make a smooth histogram for a signal or image consisting of a few samples. The function assumes correlation between the samples, and implicitly generates new linearinterpolated samples between the originate samples....
IMSHADE will plot a matrix representing topography as a 3component color image, with intensity proportional to the magnitude of the topographic slope of each pixel. Optionally, it can take an argument for lighting angle to use the directional...
Tristan Ursell Subpixel Resolved 2D Convolution March 2012 matout=matoverlay(mat1,mat2,x,y); This function takes an input matrix mat1 and creates an image of the matrix mat2 at the position (x,y) in mat1. If...
Display image with nonlinearly spaced axis. UIMAGE(X,Y,C) displays matrix C as an image, using the vectors X and Y to specify the X and Y coordinates. X and Y may be unevenly spaced vectors, but must be increasing. The size of C must be... 
User Review for Resampling volume or image with affine matrix 
