The m-file finds the elimination matrices (and scaling matrices) to reduce any A matrix to the identity matrix using the Gauss-Jordan elimination method without pivoting. Using the matrices gotten it computes the inverse of the A matrix.
DIRECT METHODS FOR SOLUTION OF LINEAR SYSTEMS Gaussian Elimination Algorithm Gauss-Jordan Algorithm Factoring algorithm
ITERATIVE METHODS FOR SOLVING SYSTEMS OF EQUATIONS Jacobi algorithm Gauss-Seidel algorithm
This is a templated library of numerical base classes which implement basic data structures like complex numbers, dynamic vectors, static vectors, different types of matrices like full matrices, band matrices, sparse matrices, etc. and also...
A Flipdict is a python dict subclass that maintains a one-to-one inverse mapping. Each key maps to a unique value, and each value maps back to that same key. Each instance has a "flip" attribute to access the inverse mapping.
Anthropomorphic arm with 6 DOF and spherical wrist It calculates the Inverse Kinematic of an Anthropomorphic arm with 6 DOF. 'q' is the solutions in radiant and K is the direct Kinematic matrix.
K = [ n s a p; 0 0 0...
It calculates the Inverse Kinematic of an Anthropomorphic arm with 3 DOF. 'q' is the solutions in radiant and K is the direct Kinematic matrix.
K = [ n s a p; 0 0 0 1] where n, s, a are three vectors fo 3 elements...
Gauss numerical integration of univariate funcitons by 7-point Gaussian quadrature. Very accuracy and fast.
IMPLEMENTATION OF GAUSS SEIDEL METHOD IN MATLAB used in the load flow problem
This Matlab program Solve N-equation with Gauss elimination method and check results with Matlab Function.
This file implement Gauss Siedel Iterative Method on MATLAB Gauss Siedel Iterative Method is a technique of Numerical Computation of finding roots of Linear equations.
Generates points and weights for Gauss Laguerre Quadrature, to a tolerance, tested for N < 300 Finds zeros and improves via recursion
Very rarely it is necessary to find the multiplicative inverse of a number in the ring of integers modulo p. Thie recipe handles those rare cases. That is, given x, an integer, and p the modulus, we seek a integer x^-1 such that x * x^-1 = 1 mod...
[psi gopt] = dfdesign_w_lmi(phi, w, d, n);
DFDESIGN_W_LMI computes the H-infinity optimal inverse FIR filter of phi(z). The resulting filter minimizes the H-infinity norm of the error system E_w(z) = [z^(-d) -...
This script will determine the lower-upper factorization of a square matrix "A" through Gauss elimination.
Kriging and inverse distance are popular interpolation methods, especially in earth sciences. There are some routines already available on matlab but are severely limited by matlabs memory constraints. By using gstat to handle interpolation and...
rilt Regularized Inverse Laplace Transform [g,yfit,cfg] = rilt(t,y,s,g0,alpha) Array g(s) is the Inverse Laplace Transform of the array y(t), calculated by a regularized least squares method.
This script is an...
It's a simple GUI that calculates a random position of the end-effector, calculates the inverse kinematic and plot the joints' trajectory in a figure. You can send the positions to the arm's controller with the 'Send' button.
For a...
function W = euklid_W(ws,d,n) function W = euklid_invW(ws,d,n) PURPOSE: create an (inverse) euklidean distance spatial weight matrix (n x m 'moving-window' style matrix with distance to center cell weighted.) ...
Computes the Gauss hypergeometric function 2F1(a,b;c;z) and its derivative for real z, z<1 by integrating the defining differential equation using the Matlab differential equation solver ode15i.
If 2F1 is to be evaluated for many...
Program given here computes the discrete transfer function of a DC motor (Example taken in this case) using pseudo inverse technique. The input and output data for any single input single output system can be used to find out the discrete transfer... |